Skill 1 - Solve Multi-Step Equations

Area and Perimeter

Perimeter $=$ Add up all of the sides. Answer is in units ex. ft.
Area $=$ Use the formulas below. Answer is in units squared ex. $f t .^{2}$

Rectangle/Square:

Parallelogram:

Trapezoid:

Circle:

Circumference $=$ distance around circle (like Perimeter)

Area and Perimeter

6 cm

$$
\begin{aligned}
P & =16 \mathrm{~cm}^{2} \\
A & =12 \mathrm{~cm}^{2} \\
A & =\frac{1}{2} b h \\
A & =\frac{1}{2}(6)(4) \\
& =12
\end{aligned}
$$

$$
p=24 \mathrm{ft}
$$

$$
A=32+1^{2} .
$$

$$
\begin{aligned}
& p=8+4+8+4=24 \\
& A=b h=(8)(4)
\end{aligned}
$$

$p=5+5+6=16$

$$
A=b h
$$

$$
13^{\prime} \quad A=\frac{1}{2} h\left(b_{1}+b_{2}\right)
$$

$$
=\frac{1}{2}(7)(22)^{2}
$$

$=2 \pi r$

$$
=2(3.14)(6)
$$

$A=\pi r^{2}=37.68$ $=3.14(6)^{2}$
$=3.14(1)$ $=3.14(36)$ $=113.04$

$$
\begin{aligned}
& \begin{aligned}
P & =8+8+10+10 \\
& =36
\end{aligned} \\
& =(10)(6) \\
& =60
\end{aligned}
$$

Slope

Draw lines with the following slopes:

- positive slope:
- negative slope:

Horizontal Lines:
Slope $=\frac{0}{n}=0$

Vertical Lines:

Slope

Steps:

A ship sails away. After 14 hrs it was 30 miles out. After 24 hrs. it was 135 miles away.

1) Write and Graph the 2 points and draw a triangle.

$$
(14,30)(24,135)
$$

2) SUBTRACT - top - vertical change bottom - horizontal change

3) Write the slope as a fraction:

Hours

$$
\text { slope }=\frac{\text { rise }}{\text { run }}
$$

$$
\text { top } \div \text { bottom }
$$

Skill 2 - Graph and Interpret Linear Functions

Fred makes 60 dollars for a house call and $\$ 45$ an hour to fix electrical.
Make a graph for his wages for up to 10 hours. ($w=$ Wages, $h=$ \# of hours)

WEMDASA		
\mathbf{h}	wi $=45 \mathrm{~h}+60$	$\mathrm{w}(\mathrm{h})$
$\mathbf{0}$	$45(0)+60$	60
$\mathbf{3}$	$45(3)+60$	195
$\mathbf{7}$	$45(7)+60$	375
$\mathbf{9}$	$45(9)+60$	465
$\mathbf{1 0}$	$45(10)+60$	510

Then use the graph to estimate how many hours he must work to
Time in Hours make $\$ 285$. (Make sure you SHOW ON THE GRAPH how you got your answer and write your answer in a COMPLETE SENTENCE.)

He would have to work about 5 hrs. to make \$285.

Slope of a staircase:

1. rise $=$ height divided by \# of steps
$48-4=12$
2. run $=$ base divided by $\#$ of steps
3. Slope $=60 \div \underset{\text { (reduce answer) }}{4}=15$

$$
\frac{12}{15}=\frac{4}{5}
$$

1. rise $=$ height $/ \#$ of steps
2. run $=48 \div 4=12$ $\begin{aligned} & \begin{array}{l}\text { base - big step } \\ \text { divide answer by steps-1 }\end{array}\end{aligned} 60 \div 3=$ divide answer by steps-1 20
3. Slope $=\underline{\text { rise }}$ (reduce answer) run $\frac{12}{20}=\frac{3}{5}$

Mean, Median, and Mode

Mean: (average) Add up all of the numbers and divide by how many there are.
Median: (middle) Number in the middle after you put them in order from least to greatest.
*odd - \# in the middle
*even - add the two numbers in the middle and divide by 2.
Mode: (most) The number that occurs the most often. Can be no mode if there are no repeats, or more than one if there is a tie for most often.

1) $1,9,10,2,6,19,2$
2) $2,6,9,6,4,7$

Mean $=$ \qquad

Median = \qquad
Mode $=$ \qquad
Mean $=$ \qquad
Median = \qquad
Mode $=$ \qquad
3) $196,246,316,712,403$
4) $4,16,37,2,5,5,1,1$

Mean = \qquad
Median $=$ \qquad
Mode $=$ \qquad
Mean = \qquad
Median $=$ \qquad
Mode $=$ \qquad

Skill 3: Write Equations of Lines Given 2 Points:

Skill 4 - Graph Linear Equations

$4 x-3 y=6$
$-4 x$

$$
m=\frac{4}{3}=
$$

Steps:

1) Add or subtract x (do the opposite) to the other side.
2) Divide everything by the number in front of.
3) Simplify (slope should be reduced, but be a fraction - never a mixed \#.or dec i mall
4) Identify the slope and y-intercept
5) Graph

- start at the y-int.(up or down) do rise over run from that point

neg. slope

Skill 5: Equations of Parallel and Perpendicular Lines

Parallel lines have the same slope.
Perpendicular lines have opposite (+/-) and reciprocal (flip) slopes

1) Write the equation of a line that is parallel to y that goes through the point $(-5,8)$.
$m=-3$ Steps:

Skill 5: Equations of Parallel and Perpendicular Lines

Parallel lines have the same slope.

2) Write the equation of a line that is perpendicular to $y=4 x=1$
that goes through the point $(12,-2)$.
$y=m x+b$

Steps:

$-2=\frac{-1}{4}(12)+b$

1) Find the slope of the given line.
2) Find the perpendicular slope (opposite reciprocal).
3) Plug x, y, and m into $y=m x+b$
4) Solve for b :
5) Write the equation (plug m and $b \quad i$ +b)

Skill 6 - Proportional Reasoning

1) $\frac{16}{x} \times \frac{4}{3}$

2) $\frac{3}{x-5}=\frac{10}{x+2}$

$$
+50+50
$$

$$
\frac{56}{7}=\frac{7 x}{7}
$$

$$
8=x
$$

Steps:

1) Cross - Multiply
2) Solve for the variable
3) Use () for + or -
4) Cross Multiply
5) Distribute (don't forget to change the signs if dist. a negative number)
6) Get x on one side (do the opposite)
7) Solve

Skill 6 - Proportional Reasoning

3) John can read 7 pages in 5 minutes. At this same rate, how many pages can he read in 80 minutes?

Steps:

1) Write a proportion:

2 fractions set $=$ to each other.
Write UNITS!!!!!!!
2) Cross multiply
$x=112$ pages
John can read 112 pages in 80 min .
3) Solve
4) Answer the question in a sentence
\qquad

Skill 7 - Pythagorean Theorem

$$
a^{2}+b^{2}=c^{2}
$$

Find the missing side:

leg-a
Steps:

1) Label a, b, c
2) Plug a, b, c into

$$
a^{2}+b^{2}=c^{2}
$$

3) Square the numbers
4) Add or subtract
5) Take the $\sqrt{ }$

Round answer to the nearest tenths. UNITS!
1)

$$
\begin{aligned}
A & =b \cdot h \\
& =20(9) \\
& =180
\end{aligned}
$$

rectangle: $180 \mathrm{ft} \mathrm{ft}^{2}$ triangle:

$$
\begin{aligned}
A & =\frac{1}{2} b h \text { Shaded area: } 90 f \\
& =\frac{1}{2}(20)(9) \frac{180}{-90} \\
& =90
\end{aligned}
$$

2)

$\sigma^{2} \stackrel{108}{6}$
$A=\pi r^{2}$
$=(3.14)(8)^{2}$

$=200.96 \mathrm{~cm}^{2}$
circle: $\frac{200.96 \mathrm{~cm}^{2}}{}$ Square: $64 \mathrm{~cm}^{2}$
shaded area: $136,96 \mathrm{~cm}^{2}$

$$
\begin{aligned}
A & =b \cdot h \\
& =8(8) \quad \begin{array}{r}
200.96 \\
\\
\\
=64
\end{array} \quad \begin{array}{r}
-64.00 \\
136.96
\end{array}
\end{aligned}
$$

$3)$

$$
\begin{aligned}
A & =b \cdot h \\
& =(50)(20) \\
& =1000
\end{aligned}
$$

rectangle: $1,000 \mathrm{ft}^{2}$

$$
\begin{array}{rlr}
A & =\pi r^{2} \text { area: } 1,314 f \\
& =(3 .+1)(10)^{2} & 1000 \\
& =(3.14)(100) & \frac{r 314}{1314} \\
& =314
\end{array}
$$

$$
\begin{aligned}
A & =b \cdot h \quad \text { rectangle }: \frac{720 \mathrm{ft}^{2}}{314 \mathrm{ft}^{2}} \\
& =(36)(20) \quad \text { circle: } \frac{720}{406}
\end{aligned}
$$

Skill 8 - Simplifying Expressions with Exponents

Rules:

$$
x^{0}=1
$$

$$
x^{1}=\chi
$$

$$
x^{2} \cdot x^{2+3}=x^{5} \text { Keep base same and add exp. }
$$

$$
4 \cdot 5
$$

$$
\left(x^{4}\right)^{5}=x^{20}
$$

$$
\frac{x^{6}}{x^{2}}=x^{4}
$$

$$
x^{-3}=\frac{1}{x^{3}}
$$

Keep base same and multiply exp.

Keep base same and subtract exp. (top-bottom)

Put a 1 over it, make the exponent positive

Exponents with Coefficients:

$(3)(6)=18$
$\begin{aligned}\left(x^{-2}\right)\left(x^{-4}\right) & =x^{-6} \\ & =y^{4}\end{aligned}$
$\left(3 x^{4}\right)^{3}=27 x^{12}$
$(3)^{3}=3 \cdot 3 \cdot 3=27$
$\left(x^{4}\right)^{3}=x^{12}$
$\frac{12 x^{-4} y^{5}}{16 x^{3} y z}=\frac{3 y^{4}}{4 x^{7} z}$
$\frac{12}{16}=\frac{3}{4} \quad \frac{y^{5}}{y 1}=y^{4}$
$\frac{x^{-4}}{x^{3}}=x^{-7} \quad$ s.
, $4=3$

Skill 8 - Simplifying Expressions with Exponents

1) $\frac{x^{5} \cdot x^{3}}{\left(x^{-6}\right)^{-2} \cdot x^{0}}$

Steps:

1) Multiply Exponents
2) Add Exponents
3) Subtract Exponents(Top - Bottom)
4) If the exponent is negative, put 1 over it, and make it positive.
5) $\frac{x^{-3} \cdot x}{\left(x^{4}\right)^{-2}}$

Skill 9- Solve Systems of Equations by Graphing

Steps:

1) Make sure both lines are in slope-intercept form.
2) Graph both lines.
$y=\frac{1}{2} x-3$
$y=\frac{3}{2} x-1$

$$
\begin{aligned}
& \text { Solution: }(-2,-4) \\
& \frac{\text { Check: }}{y=\frac{1}{2} x-3} \quad \begin{array}{l}
y=\frac{3}{2} x-1 \\
-4=\frac{1}{2}(-2)-3 \\
-4=-1-3 *-4=\frac{3}{2}(-2)-1 \\
-4=-4
\end{array}
\end{aligned}
$$

Skill 10-Solve Systems of Equations Algebraically

Steps:

1) Multiply one or both equations so that one variable has the same coefficient and opposite signs.

Skill 11 - Solve and Graph Inequalities

$\widehat{3(2 x-1)}+5-2 x \leq 5-(6 x-17)$

$$
6 x-3+5-2 x \leq 5-6 x+17
$$

$$
4 x+2 \leq-6 x+22
$$

$$
-4 x \quad-4 x
$$

$$
2 \leq-10 x+22
$$

Steps:

1) Distribute
2) Combine like terms on the same side
3) Get the variable on one side (do opposite).
4) Solve (get the variable alone.)
5) **Flip the inequality if you multiply or divide by a negative.
6) Rewrite so x is on the left, if necessar
7) Graph:

* AF Notes pg 25

Skill 12 - Solve and Graph Compound Inequalities

Solve the inequality and then graph the solution on the number line.

"And"

Steps:

1) Solve by doing the opposite (add or subtract) to a 3 sides.
2) Divide (4+3 s)des by the coefficient. If it's negative, flip BOTH inequalities.
3) Graph:
*open or closed circles
*shade BETWEEN the numbers

Skill 12 - Solve and Graph Compound Inequalities

Solve the inequality and then graph the solution on the number line.

Graphing Linear Inequalities

$$
\begin{aligned}
& 3 x-4 y \leq 8 \\
& -3 x
\end{aligned}
$$

Steps:

1. Write in slope-intercept form: $y=m x+b$.
*Flip the < or > if you divide by a negative!
2. Graph the line:

3. Shade

Skill 13 - Solve Systems of Linear Inequalities by Graphing

$$
\begin{aligned}
& y>\frac{1}{2} x-4 \\
& y \leq-x+3
\end{aligned}
$$

Steps:

* Graphrshade one line

1) Graph both lines: at afire

2) Shade up or down from each

3) Find where both are shaded. $1 \frac{54}{=}(0,0)$ a 0
4) Pick a point in the shaded part, not on the line, and check it in both equations.
$(0,0) 0>\frac{1}{2}(0)-4$

$$
0 \leq-0+3
$$

$0 \leq 3$

Adding and Subtracting Polynomials

1) $\left(\left(x^{2}+4 x-8\right)+\left(6 x^{2}-8 x+6\right)\right.$

$$
7 x^{2}-4 x-2
$$

2)

Steps:

1. If it's subtraction:

Change to addition
Change all of the signs in the () AFTER the subtraction sign to the opposite.
2. Combine Like Terms:

Add coefficients
Keep exponents the same
3. Answer must be written in standard form - highest exponents first.

Skill 14 - Multiply Polynomials

Skill 15 - Factor Greatest Common Factor (GCF)

1) $\frac{6 x^{4} y^{2}}{3 x^{2} y}, \frac{-18 x^{3} y^{3}}{3 x^{2} y^{\prime}}+\frac{3 x^{2} y}{3 x^{2} y}$

Steps:

1) Find the GCF.

2) Take out what they all have in common. (Divide by GCF)
3) Write what's left over in the (). *If nothing is left put a 1

- divide coefficients subtract exponents

2) $\frac{12 x^{4}}{6 x^{2}} \frac{-36 x^{3}}{6 x^{2}}+\frac{18 x^{2}}{6 x^{2}}$

* Never change signs
*check ()
has nothing
in common
\rightarrow same \# of terms in () that started with

Skill 16 - Factor Trinomials

$$
a x^{2}+b x+c
$$

$a \cdot c$

$\frac{-24}{-1,24}$
$-2,12$
$-3,8$
$-4,6$

No GCF X-box
**Multiply the first and last numbers * First term- first bop A last term-last box

* GCF of each column/row
* GCF gets the sign ot the box
its touching

Skill 17 - Factor Completely

Steps:

2) X-box

Skill 18 - Factor Special Cases

$$
\begin{aligned}
& \text { 1) } \sqrt{100 x^{2}}-\sqrt{9} \\
& (10 x+3)(10 x-3)
\end{aligned}
$$

Differences of Squares:

Steps:

1) Set up the answer:

$$
(+)(-)
$$

2) Take the square root $(\sqrt{ })$ of the numbers. Don't $\sqrt{ }$ the -
3) Divide the exponents by 2 .

Factor by Grouping:

Steps:

1) Fill all 4 terms into the box.

Keep the sign in front of the term!
2) Factor out the GCF for each row and column
3) Write the answer. ()()

Skill 19 - Simplifying Radicals

Skill 20 - Solve Quadratic Equations by Factoring

Skill 21 - Solve Quadratic Equations by the Quadratic Formula

$$
a x^{2}+b x+c=0 \quad x=\frac{-(b) \pm \sqrt{(b)^{2}-4(a)(c)}}{2(a)}
$$

1) $2 x^{2}-5 x=-3$
$2 x^{2}-5 x+3=0$
$a=2 \quad b=-5 \quad c=3$
$\frac{-(-5) \pm \sqrt{(-5)^{2}-4(2)(3)}}{2(2)}$

Steps:

1) Set equation $=0$.
2) Identify a, b, and c watch for negatives!
3) Plug a, b, and c into the equation.
4) Solve (PEMDAS).
5) Write 2 equations - one with + and one with the -.
6) Round answers to nearest hundredth if necessary.

Skill 21 - Solve Quadratic Equations by the Quadratic Formula

$$
a x^{2}+b x+c=0 \quad x=\frac{-(b) \pm \sqrt{(b)^{2}-4(a)(c)}}{2(a)}
$$

2)

$$
\begin{aligned}
& x^{2}+3 x=6 \\
& -6-6 \\
& x^{2}+3 x-6=0 \\
& a=1 \quad b=3 \quad c=-6 \\
& \frac{-(3) \pm \sqrt{(3)^{2}-4(1)(-6)}}{2(1)} \\
& \frac{-3 \pm \sqrt{9+24}}{2} \\
& \frac{-3 \pm \sqrt{33}}{2} \longrightarrow \frac{-3+5.74}{2}=\frac{2.74}{2}=\text { or }
\end{aligned}
$$

Skill 22 - Make a Boxplot, find Mean and Range

Given data, create a box-and-whisker plot and give the range and mean of the data.
$\{12,3,6,3,10,10,15,8,9,5\}$

Min.	\mathbf{Q}_{1}	Median ($\left.Q_{2}\right)$	\mathbf{Q}_{3}	Max.

Range: \qquad

Mean:
(round to nearest tenth)

Steps:

1) Put the numbers in order from smallest to biggest.
2) Min - smallest \#

Max - biggest \#
3) Median:
*if odd amount:
middle number
*if even amount: add 2 middle number and divide by 2
4) Q_{1} and $Q_{3}=$ Find the median of each half.
5) Range $=$ Max - Min
6) Mean = add all of the numbers and divide by how many there are.

